User's Manual

for

DAx22000, DAx12000, DAx14000
Arbitrary WaveForm Generators

2-Channel, 2.5 GS/sec, 12-bit (DAx22000)
I1-Channel, 2.5 GS/sec, 12-bit (DAx12000)
1-Channel, 4.0 GS/sec, 12-bit (DAx14000)

(2M, 8M Memory per channel - DAx22000)
(2M, 8M Memory per channel - DAx12000)
(4M, 16M Memory per channel - DAx14000)

WavePond®
P.O. Box 1487
Langley, WA 98260

Web: www.wavepond.com

Original Document: dax22000 dax14000 manual.odt
(created 01/07/13, updated 11/23/17)

© 2013 - 2017 by WavePond®

This manual, the DAx22000, DAx12000, DAx14000 modules, and the software drivers outlined in this
document are copyrighted with all rights reserved. Under the copyright laws, the above mentioned may not be
copied, in whole or in part, without the express written consent of WavePond®. WavePond® is a subsidiary of
Chase Scientific Company.

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

TABLE OF CONTENTS

1 GENERAL INFORMATION 4
1.1 INTRODUCTION.....uvvviieeieteteeeeeeetateeeeeeetaaeeeeeeeeataeeeessesaaeeeeeeassaseeeeeeasataseeseaassaseeeesansaaseeseeanssseeseeensasesseesanssaseeeseassssssssssnenes 4
1.2 REFERENCES. ...eeeieeuttteeeeeeetteeeeeeeeteeeeeseesaeeeeeeeeataeeeeeeesaaseessanstaseesssasaasseeseaatsseseesassasseessansaasseessasasseeesesssseseessnnsesessnnenes 5
1.3 DIELIVERABLES.eiuuvtitieeietteeeeeeeeaaeeeeeeesasteeeeeeestaseeessesasesessesssaseeeesaaasseseeseanssasseessansaseeessessassseesesnneseeeesssnssaseessenssessssnnnes 5

1.3 0 SOFIWAF@........oeieie ettt ettt e ekt e ekttt e Rttt Rttt ee et e ene e te et e te et e ete e e en 5
D32 HAVAWATC. ... e ettt ettt e e e e e et e e e et e e e et e e s e eaaeee s 5
1.3.3 DAX22000 CRECKLISL........cceeeeieeeeeeeeeeee ettt e ettt e e et e et e e e e e e e e e 6
1.3.4 DAXIA000 CRECKLISL........cceeeeeeeeeeeeeeeeee e ettt e e e e e et e e e e e 6
1.4 PRODUCT SPECIFICATION......uuvveieeieeurreeeeeeiuseeeeeesisseeeeeeeitsssseseeeissseseeeassssseseesassssesesaesssssseseassssseesenssssseseesissssssssssssssrsnrees 6
1.5 TECHNICAL SUPPORT / SOFTWARE UPDATES. ... uvveiiueieeeerieeeteeeiteeeeeteeeeeseeseseseesaeesenseesesssesseseesenseesssnssesesesseeeeseennnnnneees 8
1060 W ARRANTY ...eviiiieiiieeie e e ettt e eeetee e e e eee e e e eeetae e e e eeeeataeeeeeeeeataseeeeeeaassaeeeeaassaeeeeeastasseeesessaseeeeeatasseeeeesssseseeeenssssnsssnrees 9

2 HARDWARE DESCRIPTION 10
B2 BB N5 ¥ 0] 016 e (o) PRI 10
2.2 HARDWARE INSTALLATION.cceuttiieeiieiitteeeeeeiteeeeeeeeitteeeeeeeetaeeeeeeeetaaeeeeeeseaaseeeeesetasseeeeeastsseseeeenttsseeeeeaaarsseeeesentssreeseneeens 10
2.3 BLOCK DIAGRAMS.vviiiiiiiiiiii ettt et e ettt e e e ee e e e e eeeeataeeeeeeeateseeeeeetaseeeseensassaeeeeanstaeseeeeensraseeeeenarreeeens 10
O VL O I e Ns Ny <l v) PR 12

3 THEORY OF OPERATION 13
R I B N4 0) 010 s 1) PR RORURRRRRRN 13
3.2 DOWNLOADING AND OQUTPUTTING USER DATA.....vviiiiiiiiiiiiiiciiieie ettt ettt ettt e e e et e e e s s eaaaeeeessentaneeessessassssssssennes 13

4 SOFTWARE GUI APPLICATION 15
V43 I Ny 00) 010 e 4 (o) N FUUUUN T 15
VR @ 33 YNy (o) F TSRS 15

5 PROGRAMMERS INTERFACE #1 (DLL API) 16
I B 1 3:06) 010 e 3 (0 TSR SRUURRR 16
5.2 USB DRIVER INSTALLATION......cciiiiiiiiiiiieieieieetietstateeeeeeeeeeeeeeeeeeeeeeeseesesessssssssssssssaeseeeseeseeeeaeeseesesesessssasnnssesssessrnneeeeees 16
IR IV & B S N 3 0 & (o) PR TUORRRRRN 16
5.4 FUNCTION CALLS...uvviieeieitrieeeeeeeitteeeeeeeeteeeeeeeeetaaeeeeeestsseeeeeseasseseeeeaasasaeeeeeassaeeeseasassseeseeaasssseeeesasssseeseesssseseeesesesseereree 16

D40 FUNCEION LISE............ooooioeeeeee oottt e e et e e ettt e e e et e e e e e ettt e e e e e earaeeeeean 16
5.4.2 Function DeSCrIDHONS / USQZE............c..ccoeceeueeiieieeieeeeeee et et ettt ete et ese st esseeasesseensesseassesseessessseseesseenns 17
5.4.2.1 DAx22000_GetNumCards
5.4.2.2 DAX22000 OPen......ccoceevuerieneenienieneenieeieeeenieens
5.4.2.3 DAX22000 CLOSC...ccuvteueerueetteteeiteaitesteeteettesteesteeetestteseentesateaseanteenseeseesseenseanseseeanseenteenteaseenseenseensesbeenseensesstannseeesnnneas
5.4.2.4 DAX22000 INITHALZE.veiiieiiiieceeiee ettt e e et e e et e e e eaa et e e eaaeeesemaeeeeeaaeeeeeraaeeesantaeeeaaaeeeeennnaearannnaes
5.4.2.5 DAX22000 SELCIKRALE.ovveoeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeee e see e e s
5.4.2.6 DAX22000_SEIEXITTIG. .. vvvvereeeeeveeeeeeeeeseeeesessesseeeseeseesseessessesseeeseeeeeesseeessessesssesseesessseesesessessseeseesessseeeeeseesseeeseeseeoe
5.4.2.7 DAx22000_Run..........cc.e.....
5.4.2.8 DAX22000 StOP.....covvereererreneenieennens
5.4.2.9 DAx22000_SoftTrigger
5.4.2.10 DAX22000 Place MREK 2. ...oooiiiiiiiiiiiiiie ettt e e e et e e s et e e s e eaa et e e sat e e e enataeeseaa e e e e et e e e eantaeeeaareeeeaaaes 21
5.4.2.11 DAX22000 CreateSiNGIESEZMENt.................ovvveeeveeeseeeeoeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeseeseeee e eeese e s eeeeeeeseee e 21
5.4.2.12 DAX22000 CreateSEZMENLS.c..ecouteteritinrieiertenttenteeteettesteesteeetesieesseeteestesseesteeteeasesbeenseestesmeeabeenteenteessesseensesanennne 22
5.4.2.13 DAX22000 PWR D WN ..ottt ettt ettt ettt ettt ettt et e st e et e e s bt esateesateesabeesabeesabeesabeesataeeeessanannenee 23
5.4.2.14 DAx_RUN_STATUS (optional hardware after 2017.10.29).......cccooiiiiiiiieieieieeee e e 23
5.4.2.15 DAx_Set TRIG_REP_RATE (optional hardware after 2017.10.29)......c..ccccouiriiiiniininiininienieenenesese e 24
5.4.2.16 DAx_EN_TRIG REP (optional hardware after 2017.10.29)......ccccciriririiiniiirereeierc et 24
5.4.2.17 DAX22000 EXETOMHZ......ooiuiiiiiiiiiie ettt ettt ettt et e et e st e satee s et e e sabeesabeesabeesaaeenanee 24
5.5 PROGRAMMING EXAMPLES......ciiiiitititititieeeieeee et e e et e et e e e e et e eeeeeeeeeeeeeesassesassassaseseeeeseeseesaseeeeaeeeesenennanaaseaees 26
5.5.1 C/C++ Example File (included With dFiVers)................cccociiiiiieiiiieieee ettt 26
5.5.2 (TBD)...oeeeeeeeeee e ettt ettt ettt a e h e Rt bt et Rt et ekt b ekt e b e ete e bt nt e bt enteereenteenaee e 28
6 PROGRAMMERS INTERFACE #2 (SCRIPT METHOD) 28

WavePond® www.wavepond.com 2

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

6.1 INTRODUCTION .. .uvveieeieettreeeeeeeetreeeeeeeeteeeeeeeeetaeeeeeeeetsseseeeesaseseeeeaesssseseseetassaeeeaastsseeseeansssaseeeesssseseseeeantssseeseensnsssssssnnnens 28
6.2 USB DRIVER INSTALLATION......vvviiiiiiitrieeeeeiireeeeeeieteeeeeeeeitaeeeeeeesasseseeeesssseeeeessssasesessastssseeseesssseeeesasasesssssssesssessrsssrees 28
6.3 SCRIPT AP INSTALLATION.ceiiiiittiieeieiiieeee e e eettee e e e eeetae e e e eeeaaeeeeeesateeeeeeeeataeeseseesasaseeeeeasstseeeeeaasaseseeseensseseseseenssrssssres 28
6.4 SCRIPT AP CALLS...vviiiiietieeiee ettt ettt e e et e e e eea e e e eeeaae e e e eeseataeeeeeeeaaasseeeeasaaseeeeeanasseeeeesassasssssssesersseraes 28
6.5 SCRIPT AP EXAMPLES. .. .vvviiiiietieiie e eeeieiee e eeee e e eeetee e e e eeaa et e e eesateeeeeeeetaaeeessenaaaseesseensaseeessesasaseeessastareeessenasrseeeeennes 29
7 (TBD - PLACEHOLDER) 29
8 (21 0) TSP URPP 30
8 MISCELLANEOUS 30
I 7N 51517y (o) PSRRIt 30
8.2 IMIAINTENANCE . ..vvvtet et eutteeeeeeeesteeeeeeeestateeeeeeseataeeeessassasseessesaaaseeessasasseeesssnstaseeessanssassessansaassesseesnaeeeessenntaeseessnsaneeeeseneeees 30
ILLUSTRATIONS / TABLES
FIGURE 1 - DAX22000 BLOCK DIAGRAM 10
FIGURE 2 - DAX14000 BLOCK DIAGRAM 11
FIGURE 3 —I/O FOR DAX22000.....ccceeeeeeererreeeeeessssaneresssssssssesssssssssessssssssssssssssssssssssssssssssesssssssssssessssssssssssssssssssssssssse 12
FIGURE 4 - 1I/0 FOR DAX14000 12

WavePond® www.wavepond.com 3

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

1 GENERAL INFORMATION

1.1 Introduction

The DAx22000 and DAx14000 are USB based Arbitrary Waveform Generators with maximum sampling rates of 2.5
GS/sec and 4.0 GS/sec respectively. These USB modules come in aluminum boxes by default, but can also fit into a PCI
or PCle bracket slot. They are designed to produce any waveform from DC up to and even past Nyquist frequency (1/2 *
Sampling Rate). The on-board high resolution frequency synthesizer, as well as programmable segmentation, allow the
user to seamlessly fit looping waveforms into memory, alleviating the need for more expensive and less reliable options.

The DAx22000 module has the following standard features:
(2) Channel, 2.5 GS/sec, 12-bit D/A outputs (800 mVpp Typical) [SMA]

- DC Coupled outputs into 50 ohms

- 1ppm Internal Programmable Clock Synthesizer with < Spsec Jitter

- Internal Clock Synthesizer operates from 25 MHz to 2.5 GHz.

- SFDR less than -50 dB @ 825 MHz (typ)

- Full scale Trise/Tfall = 120 picoseconds (typical for 2.5 GS/sec)

- 2M, 8M Sample Memory per Channel

- 3.3V TTL Prog. Marker Out [SMA]

- 33V TTL TRIG_IN (Asynchronous Trigger Capability with 400 psec resolution) [SMA]
- Card comes in USB box or with optional bracket to fit into PCI, PCle, or no-Slot

- All functions controlled through USB Mini-B connector

The DAx14000 module has the following standard features:
(1) Channel, 4.0 GS/sec, 12-bit D/A outputs (635 mVpp Typical) [SMA]

DC Coupled outputs into 50 ohms

1ppm Internal Programmable Clock Synthesizer with < Spsec Jitter
- Internal Clock Synthesizer operates from 25 MHz to 4.0 GHz.
SFDR less than -40 dB @ 1500 MHz (typical for 4.0 GS/sec)

- Full scale Trise/Tfall = 120 picoseconds (typ)

4M, 16M Sample Memory per Channel

3.3V TTL Prog. Marker Out [SMA]

3.3V TTL TRIG_IN (Asynchronous Trigger Capability with 250 psec resolution) [SMA]
Card comes in USB box or with optional bracket to fit into PCI, PCle, or no-Slot

- All functions controlled through USB Mini-B connector

WavePond® www.wavepond.com 4

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

1.2 References

See USB 2.0 specifications.

1.3 Deliverables
1.3.1 Software

The DAx22000 and DAx14000 modules come with USB drivers (usually automatically downloaded by OS), GUI, and
programmers API software for WinXP-32, Win7-32/64, Win8-32/64. All software can be downloaded from
“www.wavepond.com”. Check with WavePond for the latest information on drivers for other operating systems.

The GUI program can perform many tasks including loading waveforms from a file, generating sine, square, triangle,
and sawtooth waves, changing clock rates, triggering etc. The GUI program executable can also be used to execute
command line API calls when parameters are detected. If any parameters are detected on the command line then the GUI
itself is not displayed and the appropriate calls are made to the hardware. After each command line call the program
removes itself from memory and returns control to the calling program. This API method was added to eliminate any
possible compatibility issues.

There is also the standard DLL API. It offers the fastest access to the board's functions but your software compiler must
be able to perform a static compile or dynamic run-time load using only the DLL. It is up to the user to work out any
interface requirements that are required for their particular compiler/application. WavePond has tested the DLL against
MinGW/GCC g++ version 3.4.2 and Lazarus 1.2.6 (Object Pascal) without any issues. WavePond uses these compilers
internally for testing because they are open source. WavePond uses 100% open source tools for software and hardware
development.

The GUI and DLL softwares themselves are written using the Lazarus IDE for readability and to comply with
WavePond's internal policy of 100% open source development tools. However, even though Lazarus' compiler is open

source, the user's software license strategies are not restricted in any way.

See section on software drivers for description of each function along with an example.

1.3.2 Hardware

By default the DAx22000/14000 hardware consists of an aluminum box (example shown below) which houses the
arbitrary waveform generator card, 3ft USB cable (A Male to USB 5-Pin Mini B Male), and 5V power supply module.
Optionally, a PCI/PCle bracket can be added to the card instead of the box.

WavePond® www.wavepond.com 5

DAx22000 / DAx14000 User Manual

2.5/ 4.0 GSPS, Arbitrary Waveform Generators

1.3.3 DAx22000 Checklist

Item | Qty Part Number Description

#

1 1 DAx22000-2M [8M] 2.5 GSPS Abitrary Waveform Generator System housed in USB
controlled aluminum box with 2M [8M] memory per channel.

2 1 USB Cable 3 or 6 foot USB cable (A Male to USB 5-Pin Mini B Male).

3 | AC/DC Power Adatper AC/DC Desktop Adapter, 5V, 18W
(not available for bracket version below)

4 1* | PCI/ PCle Bracket *Optional PCI Bracket version INSTEAD of BOX. USB controlled.

1.3.4 DAx14000 Checklist

Item Qty Part Number Description

#

1 1 DAx14000-4M [16M] 4.0 GSPS Abitrary Waveform Generator System housed in USB
controlled aluminum box with 4M [16M] memory per channel.

2 1 USB Cable 3 or 6 foot USB cable (A Male to USB 5-Pin Mini B Male).

3 | AC/DC Power Adatper AC/DC Desktop Adapter, 5V, 18W
(not available for bracket version below)

4 1* | PCI/ PCle Bracket *Optional PCI Bracket version INSTEAD of BOX. USB controlled.

1.4 Product Specification

DAX22000 (all specifications are at 25C unless otherwise specified)

1I/0 SPECIFICATIONS

Analog Outputs (SMA)
Number of D/A Outputs 2

Vertical Resolution 12-bits

Output Impedance 50 ohms

Amplitude 750 mVpp typical into 50 ohms
T(rise) / T(fall) 120 psec typical

Memory Size 2M, 8M per channel

Maximum # of Segments 60

Segment Size Range
Segment Resolution
Maximum Segment Loops

48 samples up to total memory; Modulo 16 only.
16 samples
65,534

WavePond® www.wavepond.com 6

DAx22000 / DAx14000 User Manual

LVTTL Outputs (SMA)

(2) Marker Outputs (3.3V TTL). One at beginning of waveform and one user
programmable.

LVTTL Inputs (SMA)

(1) Trigger input (3.3V). Input is DC coupled to 0.9V into 50 ohms. Actual
trigger level is 1.0V.

See software function description for functionality. Maximum re-trigger rate is
2 MHz.

(1) 10 MHz Clock Reference. AC coupled into 50 ohms. 3Vpp max. Software
selectable internal/external.

Master Clock (internal)

Frequency 25 MHz to 2.5 GHz standard
Phase Noise -100dBc/Hz @ 1KHz Offset Typical @ Fc =2.5 GHz
Jitter < 5 picoseconds
GENERAL
Power Supply (Vce) + 5.0V +/- 10%, 3A typical.

[uses PC internal supplies for ATA/SATA drives or USB power brick]

Operating Temperature

0 to 50 degrees C standard

Operating Humidity 5 to 95% non-condensing
Size 4.3" x3.9" x 0.5" (fits into PCI, PCle, no-slot, USB box.)
Data Bus USB 2.0

DAXx14000 (all specifications are at 25C unless otherwise specified)

1/0 SPECIFICATIONS

Analog Outputs (SMA)

Vertical Resolution 12-bits

Output Impedance 50 ohms

Amplitude 635mVpp typical into 50 ohms

T(rise) / T(fall) 120 psec typical

Memory Size 4M, 16M per channel

Maximum # of Segments 60

Segment Size Range 128 samples up to total memory; Modulo 32 only.
Segment Resolution 32 samples

Maximum Segment Loops 65,534

LVTTL Outputs (SMA)

(2) Marker Outputs (3.3V TTL). One at beginning of waveform and one user
programmable.

LVTTL Inputs (SMA)

(1) Trigger input (3.3V). Input is DC coupled to 0.9V into 50 ohms. Actual
trigger level is 1.0V.

See software function description for functionality. Maximum re-trigger rate is
2 MHz.

(1) 10 MHz Clock Reference. AC coupled into 50 ohms. 3Vpp max. Software
selectable internal/external.

Master Clock (internal)

Frequency 25 MHz to 4.0 GHz standard
Phase Noise -90dBc/Hz @ 1KHz Offset Typical @ Fc =4.0 GHz
Jitter < 5 picoseconds

GENERAL

Power Supply (Vcc)

+ 5.0V +/- 10%, 2.4A typical.
[uses PC internal supplies for ATA/SATA drives or USB power brick]

WavePond®

www.wavepond.com

2.5/4.0 GSPS, Arbitrary Waveform Generator

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

Operating Temperature 0 to 50 degrees C standard

Operating Humidity 5 to 95% non-condensing

Size 4.3" x3.9" x 0.5" (fits into PCI, PCle, no-slot, USB box.)
Data Bus USB 2.0

1.5 Technical Support / Software Updates

For technical support:

Email

techsupport@wavepond.com

Mail

WavePond
P.O. Box 1487
Langley, WA 98260

Web

http://www.wavepond.com

For software updates:

Email | techsupport@wavepond.com
Web http://www.wavepond.com
WavePond®

www.wavepond.com 8

http://www.chase2000.com/
http://www.chase2000.com/
http://www.chase2000.com/
http://www.chase2000.com/
http://www.chase2000.com/
http://www.chase2000.com/

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

1.6 Warranty

WavePond warrants to the original purchaser that its DAx22000, and the component parts thereof, will be free from
defects in workmanship and materials for a period of ONE YEAR from the data of purchase.

WavePond will, without charge, repair or replace at its option, defective or component parts upon delivery to
WavePond’s service department within the warranty period accompanied by proof of purchase date in the form of a
sales receipt.

EXCLUSIONS: This warranty does not apply in the event of misuse or abuse of the product or as a result of
unauthorized alterations or repairs. It is void if the serial number is altered, defaced or removed.

WavePond shall not be liable for any consequential damages, including without limitation damages resulting from loss
of use. Some states do not allow limitation or incidental or consequential damages, so the above limitation or
exclusion may not apply to you.

This warranty gives you specific rights. You may also have other rights that vary from state to state.

WavePond warrants products "directly" sold anywhere in the world. If a WavePond product is purchased through an
authorized distributor then warranty details are resolved through them.

NOTICE: WavePond reserves the right to make changes and/or improvements in the product(s) described in this
manual at any time without notice.

WavePond® www.wavepond.com 9

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

2 HARDWARE DESCRIPTION

2.1 Introduction
The DAx22000 hardware consists of the following I/O functions:

* (2) 12-bit 2.5 GSPS D/A Outputs
* (2) 3.3V Marker Outputs

* 25t0 2.5 GHz Clock Synthesizer
* Memory Controller

* USB 2.0 Interface

The DAx14000 hardware consists of the following I/O functions:

* (1) 12-bit 4.0 GSPS D/A Outputs
* (2) 3.3V Marker Outputs

* 2510 4.0 GHz Clock Synthesizer
* Memory Controller

* USB 2.0 Interface

2.2 Hardware Installation
The standard configuration is an aluminum box which is tethered to the PC with USB 2.0. An additional desktop power

brick is provided for 5V power. Optionally, the DAx22000 can be configured at the factory to install in any PCI, PCle,
or empty slot as long as there is location to attach the bracket. A molex connector (with SATA power adapter) is the
primary power for this configuration and cables should be standard inside any PC. See board drawing for location of

connectors.

2.3 Block Diagrams

SMA-1 —»| (Opt.) Clock Input (2) 12-BIT, 2.5 GHz (2) Analog Outputs |—» SMA-3
. -] DIACONVERTERS —p DC Coupled
SMA-2 —p Ext. Trigger Input 750mVpp SE » SMA4
218 MEG Memory 25 MHz to 2.5 GHz
Per Channel Master Clock Custom Logic
Generator
¥ ¥
MEMORY N CLOCK (2) TTLMARKER (—p SMA-6
CONTROLLER/ CONTROLLER! ||— OUTPUTS
SEQUENCER [*—P| GLUELoGIC —» SMA-7
USE TARGET INTERFACE CONTROLLER
Figure 1 — DAx22000 Block Diagram
WavePond® www.wavepond.com 10

DAXx22000 / DAx14000 User Manual

2.5/4.0 GSPS, Arbitrary Waveform Generator

SMA —p
SMA —p»

10 MHz Clock Input (1) 12-BIT, 4.0 GHz (1) Analog Outputs
. L | D/ACONVERTERS - DC Coupled SMA
Ext. Trigger Input 800mVpp SE —p
4116 MEG Memory 25 MHz to 4.0 GHz .
Per Channel Master Clock Custom Logic
Generator
¥ 3]
MEMORY L CLOCK (2) TTL MARKER | (—» SMA
CONTROLLER/ CONTROLLER/ | QUTPUTS
SEQUENCER [#— GLUE LoGIC —» SMA
USB TARGET INTERFACE CONTROLLER

WavePond®

www.wavepond.com

Figure 2 — DAx14000 Block Diagram

11

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generators

2.4 I/0 Connections

(5) SMA o
Connectors AOUT DAC 2 §
%
MARK OUT 1 3.3VTTL ¢=D
MARK OUT 2 3.3V TTL §. Power
e Connector
USB
Figure 3 — I/0O for DAXx22000
(5) SMA
Connectors

MARK OUT 1 3.3V TTL
Power

Connector

MARK OUT 2 3.3V TTL

)
=
3
®
@
=
[}
-
(Y]
-
(=]
=

usB

Figure 4 — I/0 for DAx14000

WavePond® www.wavepond.com

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

3 THEORY OF OPERATION

3.1 Introduction

The DAx22000 and DAx14000 modules (hereafter refered to as DAx modules) primarily consist of a Segment
Sequencer (i.c. memory sequencer), SRAM, Frequency Synthesizer, FPGA, D/A Converters, and the USB 2.0
peripheral controller (USB interface). The most relevant parts will be described briefly below.

Several things need to happen before you can output the waveform. First and foremost you have to decide on Clock
Rate, Trigger source/type, where the waveform data is coming from (software or file), and whether you're using the
internal or external reference clock. Then you have to download a waveform. During the download process special
segment sequencer instructions are automatically (invisibly) added to the download process. After this, you can RUN the
AWG module using either the "RUN" button on the GUI or via the API function call "DAx22000 Run".

By default the main tab of the GUI creates and uses a single segment while the Multi-Segment tab can handle up to 7
segments. The software API can create up to 60 linked segments and each segment has controls such as wait for trigger,
loop X times, and leading/trailing DAC levels.

The DAC's of both modules are 12-bits and their output range is defined as 0 to 4095. The output of both modules is set
to 0 V for a DAC value of 2047. A DAC value of 0 would be the most negative value (e.g. -400 mV) while a DAC value
of 4095 would be the most positive value (e.g. +400mV).

Multi-Segment operation is sequencial in nature where segment 2 comes after segment 1, and segment 3 comes after
segment 2. You cannot jump from segment 5 to segment 10, but you can jump from the last segment, say segment 100,
back to segment 0 if you're going to repeat the sequence.

3.2 Downloading and Outputting User Data

The DAx module's SRAM contain the user’s waveform data while the special command codes that run the Segment
Sequencer are stored in separate SRAM. The Segment Sequencer reads these codes to determine where and when to
jump to another segment, how many times to loop, when to wait for a trigger, and when to shut down. This is the heart of
the DAX memory management.

Downloading a Single User Waveform (single segment) into memory is performed by simply calling

DAx22000 CreateSingleSegment (
DWORD CardNum,
DWORD ChanNum,
DWORD NumPoints,
DWORD NumLoops,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pUserArrayWORD,
DWORD Triggered
)

The user must be sure to pass the size of the waveform (NumPoints), the number of times to repeat the waveform

(NumLoops), a pointer variable pointing to the user array containing the data (UserArrayPtr), and finally, whether the
segment will be self triggered or triggered by an external signal (7riggered).

Downloading Multiple Linked Waveform Segments is performed by calling

WavePond® www.wavepond.com 13

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generators

DAx22000 CreateSegments (
DWORD CardNum,
DWORD ChanNum,
DWORD NumSegments,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pSegmentsList,
bool Triggered
)i

This function call requires the user to create a structure (SegmentsList) containing all the critical information on the
segments that the user wants to download. The actual structure for each segment looks like the following:

typedef struct
{

PVOID SegmentPtr; // Pointer to User Data (Type = Array of WORD)

DWORD NumPoints; // Number of points in segment (min=48, then mod 16)

DWORD NumLoops; // Number of extra times to repeat current segment

DWORD TrigEn; // If > 0 then wait for trigger before next segment.
} SegmentStruct;

*#% Please note that the first segment in a mult-segment operation is special with regards to triggering. The boolean
parameter Triggerd applies to the first segment while "TrigEn" in the SegmentStruct directly effect the other segments.

WavePond® www.wavepond.com 14

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

4 SOFTWARE GUI APPLICATION

4.1 Introduction

The GUI application is provided to check whether the DAx board is detected and operating properly, to run custom
waveforms, to run some built-in sine/square/triangle/sawtooth waveforms, and to load Script API (see section 6).

4.2 Operation

Below is a screen shot of the "dax22000_GUI _64.exe". In general, the on-screen controls are self explanatory, but a few
comments here will help you get started.

Simply run “dax22000 GUI 32.exe” or “dax22000_GUI 64.exe” to display the DAx22000 exerciser program. Please
note that these programs require "ftd2xx.exe" and "ftdxx64 respectively to be in same directory.

Before making any changes be sure the the green RUN button is visible (and does not show red STOP). If the button
shows red STOP then click it to return it to the green RUN display. There are exceptions to this rule, but we'll keep it
simple for now.

1) Set D/A Clock Rate:

You can use the drop-down menu to select some preset values (e.g. 1.000e9, 2.000¢9, 2.500¢9) or leave it as is. You can
also set a custom value by entering a number in the "Target" box and clicking "Set Custom" button. The "Target" box
accepts floating point numbers and positive integers.

2) Create Waveform:

Clicking the "Make WFM" button and then the "RUN" button is the minimum required to output a waveform. You may
make additional selections in this group box if desired. For example, entering "4" into the Freq Div box will scale the
divide-by frequency by 4, thus enabling one to create a sine wave with a period of 256 instead of 64.

3) Set Trigger Mode:

Auto-Start provides a one-time trigger to allow the waveform to start immediately and loop a number of times according
to "Loop Count". If "Loop Count" is 0 then it will loop continuously. "Timed Trigger" will provide a periodic trigger
where "Loop Count" is a number greater than 1 (zero is not permitted). Each time the "Timed Trigger" occurs the
waveform will repeat "Loop Count" times. If the "External Trig" radio button is selected then it waits for external trigger
events (TTL) to initiate the "Loop Count" selected.

4) Load WaveForm From Text File:

This groupbox loads a single waveform from a user file and will behave according to #1 and #3 above. Each line in the
file represents a single point in an increasing time sequence and must be between 0 and 4095 (no minus signs permitted).
The time between data points (i.e. lines) is 1/(Clock Rate). The minimum number of points permissible for the
DAx22000 is 64, and for the DAx14000 is 128. The minimum granuality of increasing waveform sizes is 16 for the
DAx22000 and 32 for the DAx14000. The "Beg Value" and "End Value" is only relevant if the waveform is running off
an external trigger or Timed Trigger and will determine what the desired waveform value is leading up to a trigger event
and the value after the waveform has completed.

5) Ext. Clock Select:
This groupbox only applies if the DAx22000 is Rev. D or greater, or any version of DAx14000.

6) Enable Script Mode

WavePond® www.wavepond.com 15

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

If this checkbox is selected then the GUI will behave the same as if the Script API was activated (see Section 6 for more
details). Normally this mode is actived by "dax22000_GUI_64.exe load_api" on computer boot and the GUI is not
visible.

5 Programmers Interface #1 (dll API)

5.1 Introduction

Our primary objective in designing software drivers is to get the user up and running as quickly as possible. While the
details on individual function calls are listed below, we have also included some programming examples as well. Please
note that function calls are the same whether you are calling them under Win2000, WinXP, or Win7/8.

Very important ==> The DAx14000 uses the same software as the DAx22000. The only difference is that there is no
channel 2 on the DAx14000.

The details on installing the USB drivers are listed in 5.2. The listing of function calls and their parameter definitions are
listed in section 5.4.xx and the programming examples in section 5.5.x will show you how to include them into your
programs.

The drivers are designed to work under Windows 32/64-bit systems [check for availability on Mac OS X, Linux, and
Android].

5.2 USB Driver Installation

Windows XP and Windows 7 (32/64-bit) should install drivers automatically when card is plugged in “if” auto-update is
enabled. If not, see USB driver installation guide for the appropriate operating system instructions.

5.3 API Installation

There is No installation necessary for the programmers API. Just include the following files into the same directory as
your application software:

dax22000_lib DLL32.dll, dax22000_lib DLL32.h, ftd2xx.dll (for 32-bit)
dax22000_lib_DLL64.dll, dax22000_lib_ DLL64.h, ftd2xx64.d1l (for 64-bit)

5.4 Function Calls
5.4.1 Function List

C Header File (reference)

#ifndef dax22000 lib DLL64H
#define dax22000_lib DLL64H

/] === e
#define DWORD unsigned long int // Use any of these if not defined.
#define WORD unsigned short int //

#define BYTE unsigned char //

WavePond® www.wavepond.com 16

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

#define PVOID void * //

/= e
// USER ROUTINES

B e e LR
#define IMPORT extern "C" _ declspec(dllimport)

IMPORT int DAx22000_GetNumCards (void) ;
IMPORT int DAx22000_Open (int CardNum) ;
IMPORT int DAx22000_Close (int CardNum) ;

IMPORT int DAx22000_Initialize(int CardNum) ;

IMPORT double DAx22000_SetClkRate (int CardNum, double User_ Freq) ;
IMPORT int DAx22000_SelExtTrig(int CardNum, bool ExtTrig) ;

IMPORT int DAx22000_ Run(int CardNum, bool TriggerNow) ;
IMPORT int DAx22000_Stop(int CardNum) ;

IMPORT int DAx22000_SoftTrigger (int CardNum) ;
IMPORT int DAx22000_Place_ MRK2 (int CardNum, int Modl6_CNT) ;

IMPORT int DAx22000_CreateSingleSegment (
DWORD CardNum,
DWORD ChanNum,
DWORD NumPoints,
DWORD NumLoops,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pUserArrayWORD,
DWORD Triggered
)i

IMPORT int DAx22000_CreateSegments (
DWORD CardNum,
DWORD ChanNum,
DWORD NumSegments,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pSegmentsList,
bool Loop
)i

IMPORT int DAx22000_Debug(int CardNum, int ModeNum) ;
IMPORT int DAx22000_Ext1OMHz (int CardNum, int Enable);

#endif

5.4.2 Function Descriptions / Usage

5.4.2.1 DAx22000_GetNumCards

Description
Returns number of DAx22000 systems detected. Please note that all DAx22000 systems must be powered up for this to
occur. The DAx22000 is not powered over the USB bus.

Declaration
int DAx22000 GetNumCards (void);

WavePond® www.wavepond.com 17

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

Parameters
n/a

Return Value
Number of DAx22000 systems detected on USB bus.

Example
int NumCards = DAx22000 GetNumCards () ;

5.4.2.2 DAx22000_Open

Description
Opens API driver so that other commands may be used. The return value must be "0" before proceeding.

Declaration
int DAx22000 Open (int CardNum) ;

Parameters
CardNum: 1 <= CardNum <= 4

Return Value
0 if successful.

Example
DAx22000 Open (1) ; // Open card number 1.

5.4.2.3 DAx22000_Close

Description
Closes API driver. This is usually called before user application is terminated to prevent memory leakage.

Declaration

int DAx22000 Close (int CardNum) ;
Parameters

CardNum: 1 <= CardNum <= 4

Return Value
0 if successful.

Example
DAx22000 Close(1);

WavePond® www.wavepond.com

18

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

5.4.2.4 DAx22000_lInitialize

Description
This call initializes the USB peripheral controller and all the internal registers on the DAx22000. It must be called after
DAx22000_Open().

Declaration

int DAx22000 Initialize (int CardNum);
Parameters

CardNum: 1 <= CardNum <= 4

Return Value
0 if successful.

Example
DAx22000 Initialize(1); // Initializes card number 1.

5.4.2.5 DAx22000_SetClkRate

Description

This call sets the sampling rate of the D/A's. The user can choose anything between 25 Mhz and 2.5 GHz as a target
value and returns the actual value it was able to set. The DAx22000 uses a Fractional-N Synthesizer so the results are
usually within 1ppm.

Declaration

double DAx22000 SetClkRate (int CardNum, double User Freq);
Parameters

CardNum: 1 <= CardNum <= 4

User Freq: 25¢6 <= User Freq <= 2.5¢9 (target value for DAx22000)
User Freq: 25e6 <= User Freq <= 4.0e9 (target value for DAx14000)

Return Value
Actual value the synthesizer was able to set ... usually within 1ppm

Example
DAx22000_ SetClkRate(l, 2.205e9); // Sets sampling rate to 2.205 GHz

5.4.2.6 DAx22000_SelExtTrig

Description
When the ExtTrig value is set to "true", the DAx22000 uses the external trigger input for all triggered modes except for
soft triggers or starting trigger which the user can set at any time.

Declaration

int DAx22000 SelExtTrig(int CardNum, bool ExtTrig);
Parameters

CardNum: 1 <= CardNum <= 4

ExtTrig: true = external trigger enabled; false = external input ignored

WavePond® www.wavepond.com 19

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

Return Value
0 if successful.

Example
DAx22000 SelExtTrig(l, true); // Selects external trigger

5.4.2.7 DAx22000_Run

Description
This call is performed after all other setup calls have been done. It tells the card to start outputting waveforms. If
TriggerNow is true, then the card creates a soft trigger once to get things going.

Declaration

int DAx22000 Run (int CardNum, bool TriggerNow) ;

Parameters

CardNum: 1 <= CardNum <= 4

TriggerNow: true => add software trigger to start things off. Otherwise the trigger must be supplied

somewhere else like software trigger or external trigger.

Return Value
0 if successful.

Example
DAx22000 Run (1, true); // Starts outputting waveforms from board #1. Provides
initial trigger to start things off.

5.4.2.8 DAx22000_Stop

Description
This is the opposite of DAx22000 Run. It basically shuts off all output signals.

Declaration

int DAx22000 Stop(int CardNum) ;
Parameters

CardNum: 1 <= CardNum <= 4

Return Value
0 if successful.

Example
DAx22000 Stop (1) ;

5.4.2.9 DAx22000_SoftTrigger

Description
This is a software trigger and works whether or not the external trigger is enabled.

WavePond® www.wavepond.com 20

DAx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

Declaration
int DAx22000 SoftTrigger (int CardNum) ;
Parameters
CardNum: 1 <= CardNum <= 4

Return Value
0 if successful.

Example
DAx22000 SoftTrigger (1) ; // Creates artificial trigger for card #1.

5.4.2.10 DAx22000_Place_MRK2

Description

This fuction call allows the user to pick one point during the waveform play time to output a positive pulse on TTL
output Marker #2. The user must calculate the value by picking a point in the waveform (a time) and dividing that by 16.
16 is the resolution of the comparator. The width of the pulse is 1/16 of the sample rate (e.g. 8ns at 2.0 GS/sec).

Declaration

int DAx22000 Place MRK2 (int CardNum, int Modl6 CNT);
Parameters

CardNum: 1 <= CardNum <= 4

Modl6 _CNT: 0 <=Modl6_CNT <= (max memory)/16

Return Value
0 if successful.

Example
DAx22000_ Place MRK2 (1, 2); // Produces a 3.3V TTL output on Marker #2 at
sample location (1l6*2)= 32.

5.4.2.11 DAx22000_CreateSingleSegment

Description
This call provides the simplest way to create a continuous waveform looping on itself (NumLoops = 0), or a single
triggered waveform.

Declaration

int DAx22000 CreateSingleSegment (
DWORD CardNum,
DWORD ChanNum,
DWORD NumPoints,
DWORD NumLoops,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pUserArrayWORD,
DWORD Triggered

)i

Parameters

CardNum: 1 <=x<= 4

ChanNum: 1 <= x <=2

NumPoints: 48 <= x <= (Max Memory - 1024) [must be modulo 16]

WavePond® www.wavepond.com 21

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

NumLoops: 1 <= x <= 65,534 (0 = continuous loop)

PAD_Val Beg: 0 <= x <= 4095

PAD Val End: @ <= X <= 4095

pUserArrayWORD: Pointer to UserArray of type WORD (unsigned short).

Triggered: @ => Waveform starts up first time but cannot be triggerd later

without shutting down first.
1 => Allows waveform to be triggered more than once while running.

Return Value
0 if successful.

Example
DAx22000 CreateSingleSegment (
CardNum,
ChanNum,
MemoryDepth,
NumLoops,
2047,
2047,
pTempArrayWord,
1)

5.4.2.12 DAx22000_CreateSegments

Description
This function allows the programmer to create multple segments and define the characteristics of each segment.

Declaration
int DAx22000 CreateSegments (
DWORD CardNum,
DWORD ChanNum,
DWORD NumSegments,
DWORD PAD Val Beg,
DWORD PAD Val End,
PVOID pSegmentslList,

bool Loop

)

Parameters

CardNum: 1 <=Xx<=4

ChanNum: 1 <= x <=2

NumSegments: 1 <= X <= 60

PAD_Val_Beg: 0 <= X <= 4095

PAD_Val _End: 0 <= x <= 4095

pSegmentsList: Pointer to SegmentsList which is array of SegmentStruct (see below).

Loop: 1 allows it to loop entire string of segments.

typedef struct

{ PVOID SegmentPtr; // Pointer to User Data (Type = Array of WORD)
DWORD NumPoints; // Number of points in segment (min=48, then mod 16)
DWORD NumLoops; // Number of extra times to repeat current segment
DWORD TrigEn; // If > 0 then wait for trigger before next segment.

WavePond® www.wavepond.com 22

DAx22000 / DAx14000 User Manual

2.5/4.0 GSPS, Arbitrary Waveform Generator

} SegmentStruct;

Return Value
0 if successful.

Example

DAx22000 CreateSegments (
CardNum,
ChanNum,
NumSegments,
PAD Val Beg,
PAD Val End,
pSegmentsList,
Loop

)7

5.4.2.13 DAx22000_PWR_DWN

Description

This call powers down the DAx14000 for serial numbers > 231. "DAx22000 _Initialize" will start it up again. Please
note that after initialization the user must reload all settings since they are lost during power down.

Declaration

int DAX22000_PWR_DWN(int CardNum) ;
Parameters

CardNum: 1 <= X <=4

Return Value
0 if successful.

Example

DAx22000 PWR DWN (1) ; // Shuts down DAx14000 module #1.

5.4.2.14 DAx_RUN_STATUS (optional hardware after 2017.10.29)

Description

This function call returns "77h" when a waveform is outputing, "33h" when idle. If the generator is waiting for a trigger,

then it is considered idle.

Declaration

DWORD DAxiRUNisTATUS(DWORD CardNum) ;
Parameters

CardNum: 1 <= Xx<=4

Return Value
0x77 when outputing, 0x33 when idle.

Example

if (DAx_RUN STATUS (1) = $33) then else;

WavePond® www.wavepond.com

// Pascal

23

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

5.4.2.15 DAx_Set_TRIG_REP_RATE (optional hardware after 2017.10.29)

Description
This function call sets an internal asynchronous trigger repetition rate between 20 KHz and 200 KHz. It does not enable
counter. See DAx_EN TRIG REP to enable/disable this internal trigger.

Declaration

DWORD DAx Set TRIG REP RATE (DWORD CardNum, float REP RATE);
Parameters

CardNum: 1 <= Xx<=4

REP_RATE: 20e3 < REP_RATE < 200e3

Return Value
Actual Value with format DWORD.

Example
DAx Set TRIG_REP RATE (1,20e3); // Sets up trigger counter for 20KHz clock rate.

5.4.2.16 DAx_EN_TRIG_REP (optional hardware after 2017.10.29)

Description
This function call enables/disables the internal trigger repetition rate circuitry. See "DAx_Set TRIG_REP _RATE" to
set the actual trigger rate.

Declaration

DWORD DAx EN TRIG_REP (DWORD CardNum, DWORD Enable) ;
Parameters

CardNum: 1 <=Xx<=4

Enable: Enabled for anything greater than ©.

Return Value
0 if successful.

Example
DAx_EN TRIG REP(1,1); // Enables internal clock rate generator.

5.4.2.17 DAx22000_Ext10MHz

Description

This function call must be called AFTER an optional call to "DAx22000 Initialize". When (Enable = 1) the DAx22000
expects a 10 MHz external clock reference signal. Maximum amplitude = 3Vpp; min = 0.7Vpp. For low jitter the clock
should be squarewave not sinewave. When (Enable = 0) then the DAx22000 uses the internal 50 MHz clock.

Declaration
int DAx22000 ExtlOMHz (int CardNum, int Enable);

Parameters
CardNum: 1 <=x<=4
Enable: Enabled for anything greater than 0.

WavePond® www.wavepond.com 24

DAx22000 / DAx14000 User Manual

2.5/4.0 GSPS, Arbitrary Waveform Generator

Return Value
0 if successful.

Example

DAx22000 Extl1OMHz (1,0); // Sets up DAx22000 for 50 MHz clock reference (int/ext).

WavePond® www.wavepond.com

25

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generators

5.5 Programming Examples

5.5.1 C/C++ Example File (included with drivers)

The following C++ code was compiled using G++ wich is part of the GNU Compiler Collection (GCC). Since
WavePond only uses 100% open source development tools, it does not directly support proprietary compilers.
Internally, WavePond and Chase Scientific Company use Lazarus/FreePascal (i.e. Object Pascal) for readability,
consistancy, reliability, and security.

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
//#include <string.h>
#include <math.h>
//#include <windows.h>

#include "dax22000_lib_DLL64.h"
//using namespace std; // better to use std::cout, std::cin

/* run this program using the console pauser or add your own getch, system("pause") or input loop
*/

int main(int argc, char** argv)
{

DWORD NumCards = 9;

DWORD CardNum = 1;

DWORD Chan = 1;

int x;

double Actual_Frequency;

WORD TempArray[8000];

DWORD MemoryDepth = 512;
double pi = 3.14159265358979;

for (x=0; x < (MemoryDepth); x++) {
TempArray[x] = (unsigned int) (ceil(2047.5 + 2047.5*sin(2.0*pi* x/(32))));
}

std: :cout<<"TempArray loaded with Sinewave.\nHit key to continue ...\n";
std::cin.get();

NumCards = DAx22000_GetNumCards();

std::cout << "Number of Cards Detected = " << NumCards << "\nHit key to continue ...\n";
std::cin.get();

if (NumCards != 1) exit(9);

WavePond® www.wavepond.com 26

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

x = DAx22000_Open(1);

std::cout << "DAx22000 Open = " << x << "\nHit key to continue ...\n";
std::cin.get();

x = DAx22000_Initialize(1);

std::cout << "DAx22000_Initialize = " << x << "\nHit key to continue ...\n";
std::cin.get();

Actual_Frequency = DAx22000_SetClkRate(1, 2.0e9);

std::cout << "DAx22000_SetClkRate = " << Actual_Frequency << "\nHit key to continue ...\n";
std::cin.get();

UPLOAD USER WAVEFORM
x = DAx22000_CreateSingleSegment(

1, // DWORD CardNum

1, // DWORD ChanNum

64, // DWORD NumPoints,

o, // DWORD NumLoops, // © = Continuous Loop

2047, // DWORD PAD_Val_Beg,

2047, // DWORD PAD_Val_End,

TempArray, // PVOID pUserArrayWORD,

1 // DWORD Triggered // 1 = User can initiate "NumLoops" above by
)H // triggering externally or SoftTrigger.
std::cout << "DAx22000 CreateSingleSegment = " << x << "\nHit key to continue ...\n";

std::cin.get();

DAx22000_Run(1, true);

std::cout << "Outputing Data.\nHit key to close driver and shut off card.\n";
std::cin.get();

DAx22000_Stop(1);
DAX22000_Close(1);

return 0;

WavePond® www.wavepond.com 27

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generators

55.2 (TBD)

6 Programmers Interface #2 (Script Method)

6.1 Introduction

The Script method consists of a persistent API, loaded at boot time, and a simple text file with your instructions. The
simplest instructions to output a waveform looks like this (assume file name is test.txt):

Load sweep.txt
run

Then to execute these commands you would simply copy "test.txt" over to "dax_cmd.txt". The API (loaded at boot) will
sense that "dax_cmd.txt" file exists, execute it, erase it, and then wait for the file (your commands) to show up again.

That's it. If you want something more automated, you can use batch files or your favorite programming tool (C/C++,
Pascal, Python, Java, etc.). The key here is that compiler compatibilities are no longer an issue (i.e. no DLL's, weird
error messages, etc.).

6.2 USB Driver Installation

WinXP, Win7/8/10 should install drivers automatically when card is plugged in “if” auto-update is enabled. If not, see
USB driver installation guide for the appropriate operating system instructions.

6.3 Script API Installation

Create a batch file with the following command line:
start "" "dax22000_GUI_64.exe" load_api

Use "dax22000 GUI 32.exe" for 32-bit Windows. Then use the "Task Scheduler" on Windows 7/8/10 (or autoexec.bat
for older versions) to execute this at computer startup/login.

6.4 Script API Calls

The API calls are the same as the calls in the DLL section BUT they have no brackets, commas, or the leading
"DAx22000 " with the exception of the following functions:

Load (text file) // Assumes module number 1, pre/post 2047 value, loop infinite.

CreateSingleSegment 1 1 128 © 2047 2047 sq_wave.txt ©
CreateSegments 1 1 3 2047 2047 test_segs.txt true

WavePond® www.wavepond.com 28

DAXx22000 / DAx14000 User Manual 2.5/4.0 GSPS, Arbitrary Waveform Generator

7

The first one was added to create the simplest call possible. Standard calls are slightly more complicated as shown in the
2nd two.

For CreateSingleSegment please note that instead of a pointer you include a filename where the data is found. The file
format is the same as that required for the GUI Each line is a value between 0 and 4095.

And for CreateSegments the "test segs.txt" file includes a list of instructions in the following example format:
sweep.txt 128 1 0
64K_Data.txt 512 1 0
sq_wave.txt 128 1 0
Where the parameters are as follows:
SegmentFile => File of User Data
NumPoints => Number of points in segment
NumLoops => Number of extra times to repeat current segment

TrigEn => If > 0 then wait for trigger before going to next segment.

The number of points can be less than those in the file, but cannot be more.

6.5 Script APl Examples

Below is an example of a more realistic script that is representative of the DLL calls.

// Simple Script

Stop 1 // Make sure generator is stopped. Must be stopped before
// any waveform is created (i.e. downloaded) or clock is
// changed.

SetClkRate 1 1e9 // Changed D/A sampling rate one module 1 to 1.0 GHz.

CreateSingleSegment 1 1 128 @ 2047 2047 sq_wave.txt ©
// Creates a single segment of 128 samples using "sq_wave.txt"
// on channel #1 looping continuously.

Run 1 true // Turns on the output using pre-programmed waveform data above
// and provides a software trigger to get it started.

==> Please refer to DLL section for the individual parameter descriptions.

(TBD - placeholder)

WavePond® www.wavepond.com 29

DAx22000 / DAx14000 User Manual 2.5/ 4.0 GSPS, Arbitrary Waveform Generators

7.1 (TBD)

8 MISCELLANEOUS

8.1 Calibration

The DAx22000 has no user feature to perform calibration. However, future versions may incorporate method to upload
firmware to fix bugs or add features to the FPGA.

8.2 Maintenance

No maintenance is required. Call factory for maintenance and/or extended warranty information.

Trademarks:

WavePond is a registered trademark of Chase Scientific Company. Windows is registered trademarks of Microsoft
Corporation. MAC OS X is a registered trademark of Apple Computer. Android is a registered trademark of Google.

WavePond® www.wavepond.com 30

	1 GENERAL INFORMATION
	1.1 Introduction
	1.2 References
	1.3 Deliverables
	1.3.1 Software
	1.3.2 Hardware
	1.3.3 DAx22000 Checklist
	1.3.4 DAx14000 Checklist

	1.4 Product Specification
	1.5 Technical Support / Software Updates
	1.6 Warranty

	2 HARDWARE DESCRIPTION
	2.1 Introduction
	2.2 Hardware Installation
	2.3 Block Diagrams
	2.4 I/O Connections

	3 THEORY OF OPERATION
	3.1 Introduction
	3.2 Downloading and Outputting User Data

	4 SOFTWARE GUI APPLICATION
	4.1 Introduction
	4.2 Operation

	5 Programmers Interface #1 (dll API)
	5.1 Introduction
	5.2 USB Driver Installation
	5.3 API Installation
	5.4 Function Calls
	5.4.1 Function List
	5.4.2 Function Descriptions / Usage
	5.4.2.1 DAx22000_GetNumCards
	5.4.2.2 DAx22000_Open
	5.4.2.3 DAx22000_Close
	5.4.2.4 DAx22000_Initialize
	5.4.2.5 DAx22000_SetClkRate
	5.4.2.6 DAx22000_SelExtTrig
	5.4.2.7 DAx22000_Run
	5.4.2.8 DAx22000_Stop
	5.4.2.9 DAx22000_SoftTrigger
	5.4.2.10 DAx22000_Place_MRK2
	5.4.2.11 DAx22000_CreateSingleSegment
	5.4.2.12 DAx22000_CreateSegments
	5.4.2.13 DAx22000_PWR_DWN
	5.4.2.14 DAx_RUN_STATUS (optional hardware after 2017.10.29)
	5.4.2.15 DAx_Set_TRIG_REP_RATE (optional hardware after 2017.10.29)
	5.4.2.16 DAx_EN_TRIG_REP (optional hardware after 2017.10.29)
	5.4.2.17 DAx22000_Ext10MHz

	5.5 Programming Examples
	5.5.1 C/C++ Example File (included with drivers)
	5.5.2 (TBD)

	6 Programmers Interface #2 (Script Method)
	6.1 Introduction
	6.2 USB Driver Installation
	6.3 Script API Installation
	6.4 Script API Calls
	6.5 Script API Examples

	7 (TBD - placeholder)
	7.1 (TBD)

	8 MISCELLANEOUS
	8.1 Calibration
	8.2 Maintenance

